Difference between revisions of "Opcode"
Line 1: | Line 1: | ||
− | An '''opcode''' is an instruction for the [[F8]] to follow. Programs are made up of opcodes, which instruct the F8 to do something, such as load a register with a value, perform | + | An '''opcode''' is a number representing an instruction for the [[F8|F8 processor system]] to follow for example $2B means No Operation (NOP). Programs are made up of opcodes, which instruct the F8 System to do something, such as load a register with a value, perform arithmetic on a register, change the program counter (jump), or input or output data through the [[port]]s. Opcodes in the F8 System are each one byte wide, though some may be followed by an address (two bytes) or a value for the opcode to use. Often people refer to the mnemonics as opcodes but these are just constructed so we people can understand it easier than just looking at rows of numbers. NOP is such a mnemonic and can be used in an assembly program listing. |
== Opcode Reference == | == Opcode Reference == | ||
Line 66: | Line 66: | ||
{| border="1" cellspacing="1" cellpadding="4" style="width: 100%" | {| border="1" cellspacing="1" cellpadding="4" style="width: 100%" | ||
|+ Table copied from [http://channelf.se/files/channelf/f8_info_%2716_bit_%B5P_architecture%27%2C_Terry_Polhoff_%281979%29.pdf F8_info]<br />Extra data added from [http://www.nyx.net/~lturner/public_html/F8_ins.html L. Turner F8 ins] | |+ Table copied from [http://channelf.se/files/channelf/f8_info_%2716_bit_%B5P_architecture%27%2C_Terry_Polhoff_%281979%29.pdf F8_info]<br />Extra data added from [http://www.nyx.net/~lturner/public_html/F8_ins.html L. Turner F8 ins] | ||
− | ! rowspan="2" | | + | ! rowspan="2" | Mnemonic |
! rowspan="2" | Length | ! rowspan="2" | Length | ||
! rowspan="2" | Cycles | ! rowspan="2" | Cycles | ||
Line 128: | Line 128: | ||
|- | |- | ||
− | ! rowspan="2" | | + | ! rowspan="2" | Mnemonic |
! rowspan="2" | Length | ! rowspan="2" | Length | ||
! rowspan="2" | Cycles | ! rowspan="2" | Cycles | ||
Line 205: | Line 205: | ||
|- | |- | ||
− | ! rowspan="2" | | + | ! rowspan="2" | Mnemonic |
! rowspan="2" | Length | ! rowspan="2" | Length | ||
! rowspan="2" | Cycles | ! rowspan="2" | Cycles |
Revision as of 15:25, 18 November 2012
An opcode is a number representing an instruction for the F8 processor system to follow for example $2B means No Operation (NOP). Programs are made up of opcodes, which instruct the F8 System to do something, such as load a register with a value, perform arithmetic on a register, change the program counter (jump), or input or output data through the ports. Opcodes in the F8 System are each one byte wide, though some may be followed by an address (two bytes) or a value for the opcode to use. Often people refer to the mnemonics as opcodes but these are just constructed so we people can understand it easier than just looking at rows of numbers. NOP is such a mnemonic and can be used in an assembly program listing.
Contents
Opcode Reference
In the information for each opcode, the following notations are used:
Opcode Notations | |||||||||
---|---|---|---|---|---|---|---|---|---|
A | Accumulator | ||||||||
Ri | Scratchpad register i (r0-r11) | ||||||||
P0 | Program counter | ||||||||
P | Program counter Stack | ||||||||
DC0 | Data counter | ||||||||
DC1 | Alternate data counter | ||||||||
W | Status register | ||||||||
ISAR | Indirect Scratchpad Address Register | ||||||||
r | Scratchpad addressing as:
| ||||||||
t | 3-bit constant | ||||||||
i | 4-bit constant | ||||||||
n | 8-bit constant | ||||||||
nn | 16-bit constant | ||||||||
( ) | Contents of memory (e.g., (DC)) | ||||||||
x | Binary value placeholder | ||||||||
Status Flag Notations | |||||||||
O | Overflow Flag | ||||||||
Z | Zero Flag | ||||||||
C | Carry Flag | ||||||||
S | Sign Flag | ||||||||
0 | Resets status flag | ||||||||
1 | Sets status flag | ||||||||
X | Modifies status flag |
Mnemonic | Length | Cycles | Description | Opcode | Status Flags | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Binary | Hex | O | Z | C | S | ||||||
8-bit Transfers | |||||||||||
LR A, r | 1 | 1 | A = r | %0100xxxx | $4x | ||||||
LR A, Ku | 1 | 1 | A = R12 | %00000000 | $00 | ||||||
LR A, Kl | 1 | 1 | A = R13 | %00000001 | $01 | ||||||
LR A, Qu | 1 | 1 | A = R14 | %00000010 | $02 | ||||||
LR A, Ql | 1 | 1 | A = R15 | %00000011 | $03 | ||||||
LR r, A | 1 | 1 | r = A | %0101xxxx | $5x | ||||||
LR Ku, A | 1 | 1 | R12 = A | %00000100 | $04 | ||||||
LR Kl, A | 1 | 1 | R13 = A | %00000101 | $05 | ||||||
LR Qu, A | 1 | 1 | R14 = A | %00000110 | $06 | ||||||
LR Ql, A | 1 | 1 | R15 = A | %00000111 | $07 | ||||||
LM | 1 | 2.5 | A = (DC0), DC0 = DC0 + 1 | %00010110 | $16 | ||||||
ST | 1 | 2.5 | (DC0) = A, DC0 = DC0 + 1 | %00010111 | $17 | ||||||
LR A, IS | 1 | 1 | A = ISAR | %00001010 | $0A | ||||||
LR IS, A | 1 | 1 | ISAR = A | %00001011 | $0B | ||||||
LR J, W | 1 | 1 | R9 = W | %00011101 | $1D | ||||||
LR W, J | 1 | 2 | W = R9 | %00011110 | $1E | ||||||
LISU i | 1 | 1 | ISAR(upper) = i | %01100xxx | $6x | ||||||
LISL i | 1 | 1 | ISAR(lower) = i | %01101xxx | $6x | ||||||
LI n | 2 | 2.5 | A = n | %00100000 %xxxxxxxx | $20 $xx | ||||||
LIS i | 1 | 1 | A = i | %0111xxxx | $7x | ||||||
CLR | 1 | 1 | A = 0 | %01110000 | $70 | ||||||
Mnemonic | Length | Cycles | Description | Opcode | Status Flags | ||||||
Binary | Hex | O | Z | C | S | ||||||
16-bit Transfers | |||||||||||
LR K, P | 1 | 4 | R12=P(upper), R13=P(lower) | %00001000 | $08 | ||||||
LR H, DC | 1 | 4 | R10=DC0(upper), R11=DC0(lower) | %00010001 | $11 | ||||||
LR Q, DC | 1 | 4 | R14=DC0(upper), R15=DC0(lower) | %00001110 | $0E | ||||||
LR P, K | 1 | 4 | P(upper)=R12, P(lower)=R13 | %00001001 | $09 | ||||||
LR DC, H | 1 | 4 | DC0(upper)=R10, DC0(lower)=R11 | %00010000 | $10 | ||||||
LR DC, Q | 1 | 4 | DC0(upper)=R14, DC0(lower)=R15 | %00001111 | $0F | ||||||
DCI nn | 3 | 6 | DC0=nn | %00101010 %xxxxxxxx %xxxxxxxx | $2A $xx $xx | ||||||
XDC | 1 | 2 | DC0=DC1, DC1=DC0 | %00101100 | $2C | ||||||
ADC | 1 | 2.5 | DC0=DC0+A | %10001110 | $8E | 0 | X | 1 | 0 | ||
8-bit Arithmetic | |||||||||||
AS r | 1 | 1 | A = A + r | %1100xxxx | $Cx | X | X | X | X | ||
AI n | 2 | 2.5 | A = A + n | %00100100 %xxxxxxxx | $24 $xx | X | X | X | X | ||
Jumps | |||||||||||
BR n | 2 | 3.5 | P0 = P0 + 1 + n | %10010000 %xxxxxxxx | $90 $xx | ||||||
BC n | 2 | 3 (no branch) 3.5 (branch) |
if CARRY: P0 = P0 + 1 + n | %10000010 %xxxxxxxx | $82 $xx | ||||||
BNC n | 2 | 3 (no branch) 3.5 (branch) |
if NO CARRY: P0 = P0 + 1 + n | %10010010 %xxxxxxxx | $92 $xx | ||||||
BP n | 2 | 3 (no branch) 3.5 (branch) |
if POSITIVE: P0 = P0 + 1 + n | %10000001 %xxxxxxxx | $81 $xx | ||||||
BM n | 2 | 3 (no branch) 3.5 (branch) |
if NEGATIVE: P0 = P0 + 1 + n | %10010001 %xxxxxxxx | $91 $xx | ||||||
BZ n | 2 | 3 (no branch) 3.5 (branch) |
if ZERO: P0 = P0 + 1 + n | %10000100 %xxxxxxxx | $84 $xx | ||||||
BNZ n | 2 | 3 (no branch) 3.5 (branch) |
if NOT ZERO: P0 = P0 + 1 + n | %10010100 %xxxxxxxx | $94 $xx | ||||||
BNO n | 2 | 3 (no branch) 3.5 (branch) |
if NO OVERFLOW: P0 = P0 + 1 + n | %10011000 %xxxxxxxx | $98 $xx | ||||||
BT t, n | 2 | 3 (no branch) 3.5 (branch) |
AND bitmask t with W, if result = TRUE: P0 = P0 + 1 + n | %10000xxx %xxxxxxxx | $8x | ||||||
BF i, n | 2 | 3 (no branch) 3.5 (branch) |
AND bitmask i with W, if result = FALSE: P0 = P0 + 1 + n | %1001xxxx %xxxxxxxx | $9x | ||||||
BR7 n | 2 | 2 (no branch) 2.5 (branch) |
if ISAR(lower) != 7: P0 = P0 + 1 + n | %10001111 %xxxxxxxx | $8F $xx | ||||||
JMP nn | 3 | 5.5 | P0 = nn, A is destroyed | %00101001 %xxxxxxxx %xxxxxxxx | $29 $xx $xx | ||||||
LR P0, Q | 1 | 4 | P0(upper) = R14, P0(lower) = R15 | %00001101 | $0D | ||||||
Mnemonic | Length | Cycles | Description | Opcode | Status Flags | ||||||
Binary | Hex | O | Z | C | S | ||||||
Call/Return | |||||||||||
Shifts | |||||||||||
SL 1 | 1 | 1 | Shift A left one bit, fill with %0 | %00010011 | $13 | 0 | X | 0 | X | ||
SL 4 | 1 | 1 | Shift A left four bits, fill with %0000 | %00010101 | $15 | 0 | X | 0 | X | ||
SR 1 | 1 | 1 | Shift A right one bit, fill with %0 | %00010010 | $12 | 0 | X | 0 | 1 | ||
SR 4 | 1 | 1 | Shift A right four bits, fill with %0000 | %00010100 | $14 | 0 | 1 | 0 | 1 | ||
Misc. | |||||||||||
COM | 1 | 1 | A = [[complement] of A (inverse) | %00011000 | $18 | 0 | X | 0 | X | ||
NOP | 1 | 1 | No operation (cycle waster) | %00101011 | $2B | ||||||
EI | 1 | 1 | Enable interrupts in status register bit 4 | %00011011 | $1B | ||||||
DI | 1 | 1 | Disable interrupts in status register bit 4 | %00011010 | $1A | ||||||
Input/Output | |||||||||||
IN n | 2 | 4 | Input port n to A | %00100110 %xxxxxxxx | $26 $xx | ||||||
INS i | 1 | 2 (i=0-1) 4 (i=4-7) |
Input port i to A | %1010xxxx | $Ax | ||||||
OUT n | 2 | 4 | Output A to port n | %00100111 %xxxxxxxx | $27 $xx | ||||||
OUTS i | 1 | 2 (i=0-1) 4 (i=4-7) |
Output A to port i | %1011xxxx | $Bx |
(rest of table to follow)